
Algebraic Semantics for Modal Logic with Propositional

Quantifiers

Yifeng Ding (voidprove.github.io)

March 4, 2022

Department of Philosophy, Peking University

voidprove.github.io


What is modal logic

A logic codifies all the correct ways to use (do reasoning with) certain words.

• Classical propositional logic codifies all the classically correct ways to use ‘and’,

‘or’, ‘not’, which includes distributivity, de Morgan, etc.

• Classical first-order logic codifies all the classically correct ways to use ‘and’, ‘or’,

‘not’, ‘for all’, ‘there is’, and variables/names.
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What is modal logic

Modal logics care about a special kind of words called modalities or modal operators,

which grammatically are just like ‘and’ and ‘not’: they are applied to sentences to form

new sentences.

• ‘There are human residents on the Moon.’ 7→ ‘It will be the case that there are

human residents on the Moon.’

• ‘57 is a prime number.’ 7→ ‘I believe that 57 is a prime number.’

• ‘There is life in this universe.’ 7→ ‘It is necessary that there is life in this universe.’
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What is modal logic

To justify that certain reasoning patterns are really correct for certain words, we often

resort to formal semantics of those words.

Formal semantics typically provides a formal definition of truth condition, and

correctness is defined by truth preservation or truth in virtual of meaning.

V (φ) ∈ {0, 1}
V (φ ∨ ψ) = max(V (φ),V (ψ))

V (¬φ) = 1− V (φ).

Then V (p ∨ ¬p) = 1 no matter whether V (p) = 0 or 1.

(p ∨ ¬p) is true in virtual of the meaning of ∨ and ¬.
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What is modal logic

What could the formal semantics for modal operators like ‘It will be the case that’ and

‘I believe that’?

This question gave people headaches back in 1940’s, but it’s almost trivial nowadays:

use possible worlds/states/phases/outcomes...
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What is modal logic

Say you want to study an isolated device A evolving in discrete time.

• Let W be the set of all possible states A could be in.

• Let f : W → W so that f (x) is the next state of A if A is in x .

• Let p be anything meaningful you can say about A.

• Let V (p) ⊆ W be the set of states that render p true.

Then ‘It will be that p’ is true at precisely those states in (f ∗)−1[V (p)].
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What is modal logic

Definition

Fix countably infinite set Prop of propositional variables. Then L is the set of

formulas defined by

L ∋ φ ::= p | ⊤ | ¬φ | (φ ∧ φ) | □φ

with p ∈ Prop. ⊥ := ¬⊤, (φ ∨ ψ) = ¬(¬φ ∧ ¬ψ), (φ→ ψ) := ¬(φ ∧ ¬ψ),
♢φ := ¬□¬φ.
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What is modal logic

Definition

A frame is a tuple F = ⟨W ,R⟩. A valuation V on F is a function from Prop to

℘(W ). Then inductively define V̂ : L → ℘(W ):

V̂ (p) = V (p)

V̂ (⊤) = W

V̂ (¬φ) = W \ V̂ (φ)

V̂ (φ ∧ ψ) = V̂ (φ) ∩ V̂ (ψ)

V̂ (□φ) = {x ∈ W | R(x) ⊆ V̂ (φ)}.

By definition, V̂ (♢φ) = R−1[V̂ (φ)].

φ is valid on F if for all V : Prop → ℘(W ), V̂ (φ) = W .
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What is modal logic

Classes C of frames determine sets of validities Log(C) ⊆ L. All of these sets share

some properties that bear direct intuitive appeal.

Definition

A set L ⊆ L is a normal modal logic if

• L contains all classically valid modality-free formulas

• L is closed under uniform substitution: if φ ∈ L, then φ[ψ/p] ∈ L

• L contains the formula K : (□p ∧□(p → q)) → □q

• L is closed under necessitation: if φ ∈ L, then □φ ∈ L

• L is closed under modus ponens: if φ, (φ→ ψ) ∈ L, then ψ ∈ L.
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Some normal modal logics

K4

T

KD

KB

KDB

B

K

K45

K5

KB5

KD4 KD45

KD5

S4 S5

For every X ⊆ L, Fr(X ) is the class of all frames validating everything in X .

For the above L, L = Log(Fr(L)).
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Examples of propositional quantifiers

L has no quantifiers, so it’s missing quite some expressivity we actually have.

• I believe that everything I believe is true: B∀p(Bp → p).

• I know that there’s a truth I don’t know: K∃p(p ∧ ¬Kp).
• a knows that b knows everything a knows: Ka∀p(Kap → Kbp).

• There is a true proposition that necessarily implies every true proposition:

∃p(p ∧ ∀q(q → □(p → q))).
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Logical properties of modal logics with propositional quantifiers

• Propositional quantifiers provide extra expressivity.

• The amount of expressivity depends on which modality/which frame class you are

talking about.

• Extra expressivity comes with extra complexity in logics, and sometimes the extra

complexity can be quite extreme.
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Add propositional quantifiers

Definition

Let LΠ be the language with the following grammar

φ ::= p | ⊤ | ¬φ | (φ ∧ φ) | □φ | ∀pφ

where p ∈ Prop. ∃pφ := ¬∀p¬φ.

Let F = ⟨W ,R⟩ be a frame, and V a valuation on F , then

w ∈ V̂ (∀pφ) ⇔ ∀V ′ : Prop → ℘(W ), if V |−p = V ′|−p then w ∈ V̂ ′(φ).

Equivalently, V̂ (∀pφ) =
⋂

X⊆W V̂ [X/p](φ).
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Examples

Let F = ⟨W ,R⟩ and V any valuation on F .

• V̂ (∀p(□p → p)) = {w ∈ W | wRw}.
• V̂ (∃p(p ∧ ¬□p)) = {w ∈ W | ∃w ′ ̸= w ,wRw ′}.
• V̂ ( ∃p(p ∧ ∀q(q → □(p → q))) ) = W .

In other words, ∃p(p ∧ ∀q(q → □(p → q))) is valid on any frame.

But in what sense is this ‘true in virtue of the meaning’ of the logical words involved?
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The cost of extra expressivity

You can simulate quantification over binary predicates (over worlds) using

propositional quantifiers on an arbitrary Kripke model.

Theorem (Fine 1970)

The logic, with propositional quantifiers, of any of the following classes of frames is

recursively equivalent to full second order logic:

• the class of all frames,

• the class of all preorders, and

• the class of all undirected graphs.
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More constrained binary relations

As we put more constraints on the binary relation, the simulation of quantification over

sets of pairs of worlds becomes harder.

Theorem (Fine 1969)

The logic of the class of equivalence relations is decidable. Over this class of frames,

propositional quantifiers essentially add the ability to count worlds.

Theorem (Antonelli & Thomason 2002)

The logic of the class of frames with two equivalence relations is recursively

equivalent to full second order logic.
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KD45’s place in the literature

KB5Π+K4Π+

TΠ+

KDΠ+

KBΠ+

KDBΠ+

BΠ+

KΠ+

K45Π+

K5Π+

KD4Π+ KD45Π+

KD5Π+

S4Π+ S5Π+

LΠ+ is the set of formulas in LΠ valid on all frames validating L.
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Expressivity beyond Kripke models

Frames also hide some of the expressivity of propositional quantifiers.

At : ∃p(p ∧ ∀q(q → □(p → q))),

Bc : ∀p□φ→ □∀pφ.

At is valid because we have singleton propositions.

Bc is valid because the □’ed propositions are closed under arbitrary intersections as

they are represented by a single set R(w): w ∈ V̂ (□φ) iff V̂ (φ) ⊇ R(w).
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Algebraic semantics

Propositions form a Boolean algebra when ordered by logical strength. A unary

sentential operator is essentially a unary function from propositions to propositions.

Definition

A Boolean algebra expansion (BAE) B is a tuple ⟨B,□⟩ where B is a Boolean

algebra and □ : B → B.

For any V : Prop → B, V̂ (□φ) = □(V̂ (φ)).

For any b ∈ B, V̂ (∀pφ) ⩽ V̂ [b/p](φ).

If a ⩽ V̂ [b/p](φ) for any b ∈ B, then a ⩽ V̂ (∀pφ).
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Algebraic semantics

Definition

A BAE B = ⟨B,□⟩ is complete if any X ⊆ B has a highest lower bound (meet) in B.

In any complete BAE B = ⟨B,□⟩, V̂ (∀pφ) =
∧
{V̂ [a/p](φ) | a ∈ B}.

This generalizes the frame-based semantics for ∀p by replacing
⋂

with
∧
.

A formula φ is valid on ⟨B,□⟩ if for all V : Prop → B, V̂ (φ) = ⊤.
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Π-logics

Definition

The following are called Π-principles.

• Dist : ∀p(φ→ ψ) → (∀pφ→ ∀pψ),
• Inst : ∀pφ→ φ[ψ/p], if substitutable,

• Vacu : φ→ ∀pφ, if p is not free in φ,

• Univ : whenever φ is a logic, ∀pφ is also the logic.

L ⊆ LΠ is a normal Π-logic if it satisfies the Π-principles and also the requirements

for being a normal modal logic in LΠ.

If L is a normal modal logic, LΠ is the smallest normal Π-logic extending L.

21



Logics extending S5

S5 is the smallest normal modal logic containing

T : □p → p 4 : □p → □□p 5 : ¬□p → □¬□p.

S5 is also the logic of the class U of all frames ⟨W ,W ×W ⟩.

Theorem (Scrogg)

Every normal modal logic extending S5 is the logic of a subset of U.

These logics form a chain isomorphic to reversed N∞ and are all computable.

But S5Π is not the logic of any class of frames, because At ̸∈ S5Π.
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Complete simple monadic algebras

Definition

A complete simple monadic algebra is a complete BAE ⟨B,□⟩ such that

□a =

⊤ if a = ⊤

⊥ otherwise.

These are “simple” complete BAEs validating S5. They generalize frames with a

universal relation.
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Logics extending S5Π

Theorem

Every normal Π-logic containing S5 is the logic of the class of complete simple

monadic algebras validating it.

There are a continuum many such logics, ordered by inclusion like open sets in the

disjoint union of two copies of N∞.

For every X ⊆ N, there is such a logic Turing-equivalent to X .

A pair (n, t) ∈ N∞ × {0, 1} represents the type of a complete Boolean algebra: n is

the number of atoms it has, and t = 1 iff it has an atomless part.
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Logics of belief with propositional quantifiers

Without propositional quantifiers, KD45 is a natural logic for belief, and is known for

decades.

K (□p ∧□(p → q)) → □q D ¬□(p ∧ ¬p)
4 □p → □□p 5 ¬□p → □¬□p

Nec ⊢ φ⇒⊢ □φ.

A KD45 frame is a frame with a serial, transitive, and Euclidean relation:

(xRy ∧ xRz) ⇒ yRz .

R(w) is the set of uneliminated possibilities you have at w . R(w) ̸= ∅, and for any

w ′ ∈ R(w), R(w ′) = R(w) b/c you know what R(w) is.
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Facing choices

With propositional quantifiers, we will need to decide whether the following should sit

in a logic of belief:

• At: ∃p(p → ∀q(q → □(p → q))).

• Bc: ∀p□φ→ □∀pφ.
• Immod: □∀p(□p → p).

• 4∀: ∀p□φ→ □∀p□φ.

4∀ is still about introspection. But the others require more.

Immod doesn’t sound right.
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Algebraic semantics

KD45 frames validate At, Bc, Immod. We need to generalize.

Definition

A KD45 algebra is a BAE validating KD45. These are also called pseudo-monadic

algebras.

A well-connected KD45 algebra (wKD45 algebra) is a BAE ⟨B,□⟩ such that there is

a proper filter FB in B such that

□a =

⊤ if a ∈ FB

⊥ otherwise.

These are KD45 algebras ⟨B,□⟩ such that range(□) = {⊤,⊥}.

27



Algebraic semantics

KD45 frames validate At, Bc, Immod. We need to generalize.

Definition

A KD45 algebra is a BAE validating KD45. These are also called pseudo-monadic

algebras.

A well-connected KD45 algebra (wKD45 algebra) is a BAE ⟨B,□⟩ such that there is

a proper filter FB in B such that

□a =

⊤ if a ∈ FB

⊥ otherwise.

These are KD45 algebras ⟨B,□⟩ such that range(□) = {⊤,⊥}.

27



Algebraic semantics

KD45 frames validate At, Bc, Immod. We need to generalize.

Definition

A KD45 algebra is a BAE validating KD45. These are also called pseudo-monadic

algebras.

A well-connected KD45 algebra (wKD45 algebra) is a BAE ⟨B,□⟩ such that there is

a proper filter FB in B such that

□a =

⊤ if a ∈ FB

⊥ otherwise.

These are KD45 algebras ⟨B,□⟩ such that range(□) = {⊤,⊥}.

27



Main results

Algebra class Logic

complete wKD45 algebras KD4∀5Π

complete wKD45 algebras with FB principal KD4∀5ΠImmod

atomic complete wKD45 algebras KD4∀5ΠAt

atomic complete wKD45 algebras with FB principal KD4∀5ΠAtImmod

KD45 Kripke models KD4∀5ΠAtImmod

All of these are decidable. More generally

Theorem

The logic of complete wKD45 algebras validating φ is KD4∀5Πφ. The logic of

atomic complete wKD45 algebras validating φ is KD4∀5ΠAtφ.
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4∀

Theorem

Any complete BAE validating KD45 validates 4∀.

If the structure of propositions is complete, then 4∀ is a logical consequence of KD45.

Theorem

4∀ is not in KD4∀5ΠImmod. Thus there is a BAE validating KD45 but not 4∀.

Even with the help of Immod, Π-principles can’t derive 4∀ from KD45. The refutation

uses a model with propositional contingency where the agent modeled thought there

are more propositions than there really is.
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Extensions of KD4∀5Π

KD45Π

KD4∀5Π

(KD45Π4∀)

KD45ΠImmod

KD45ΠBc

(KD45Π4∀Bc,KD45ΠImmodBc,KD45Π4∀ImmodBc,KD45Π4∀Immod)
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Proof strategy

A big part of the language is really talking about the quotient Boolean algebra B/FB
in a first order way.

For example V̂ (♢p) is either ⊤ or ⊥ and is ⊤ iff V̂ (p) ̸= ⊥ in B/FB. Then

V̂ (∀p(♢p → ∃q(♢(p ∧ q) ∧ ♢(p ∧ ¬q))))

is either ⊤ or ⊥, and it is ⊤ iff B/FB is atomless: for all b ∈ B/FB, if b > ⊥ then

there is ⊥ < b′ < b in B/FB.
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Proof strategy

But not all formulas are evaluated to either ⊤ or ⊥. V̂ (∀p(□p → p)) is always
∧
FB

which typically is neither ⊤ nor ⊥.

We can separate the translatable part from the non-translatable part.

After translation, we just need:

Theorem

The first-order logic of the non-trivial quotients of complete Boolean algebras is just

the first-order logic of all non-trivial Boolean algebras.
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Proof strategy

Theorem (Vermeer 1996)

Every c+-field of sets is a quotient of a complete Boolean algebra.

Theorem (Tarski)

Two Boolean algebras are elementarily equivalent iff they have the same invariant.

But for each invariant, there is a c+-field of sets having that invariant.
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Reviewing the results

KB5Π+K4Π+

TΠ+

KDΠ+

KBΠ+

KDBΠ+

BΠ+

KΠ+

K45Π+

K5Π+

KD4Π+ KD45Π+

KD5Π+

S4Π+ S5Π+

Here LΠ+ is the Π-logic of all frames validating L.
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Puzzles remain

S5Πc = S5Π, the logic of all complete simple monadic algebras.

However, KD45Πc ̸= KD45Π because of 4∀.

What are some intrinsic sufficient/necessary condition for LΠc = LΠ?

We know that S4Π+ is highly non-c.e. and S4Π is trivially c.e., but what about S4Πc?
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Thank you!
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