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Introduction

• We have expressions that quantifies over propositions:

“Everything I believe is true.” (Locally)

• Kit Fine systematically studied a few modal logic systems with

propositional quantifers based on S5.

• We provide an analogue of Scroggs’s theorem for modal logics

with propositional quantifiers using algebraic semantics.

• More generally, it is interesting to see how classical results

generalize when using algebraic semantics.
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Review of Kripke Semantics



Language

Definition

Let LΠ be the language with the following grammar

ϕ ::= p | > | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | ∀pϕ

where p ∈ Prop, a countably infinite set of propositional variables.

Other Boolean connectives, ⊥, and ♦ are defined as usual.
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Kripke semantics

Every subset is a proposition!

• A pointed model 〈W ,R,V 〉,w makes ∀pϕ true iff for all

X ⊆W , 〈W ,R,V [p 7→ X ]〉,w makes ϕ true.

• Equivalently, J∀pϕKM =
⋂

X⊆MJϕKM[p 7→X ].

Under this semantics, it is natural to call this language Second

Order Propositional Modal Logic, SOPML for short.

Examples: J∀p(�p → p)KM does not depend on V and is precisely

the set of reflexive points in M.

J∀p(�♦p → ♦�p)KM is not first-order definable.
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Kripke semantics

Another example:

J♦p ∧ ∀q(�(p → q) ∨�(p → ¬q))KM

is the set of points that can access to exactly one element in V (p).

Call this formula atom(p).

Theorem

Full second-order logic can be embedded into SOPML (preserving

satisfiability) when R is S4.2 or weaker.

Theorem

When R = W ×W, SOPML is expressively equivalent to MSO.
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Algebraic Semantics



Algebraic semantics: reasons

• Kripke frames corresponds to complete, atomic, completely

multiplicative modal algebras. We are forced to accept

∃p(p ∧ atom(p)) when � is S5. And we are forced to accept

Barcan: ∀p�ϕ↔ �∀pϕ.

• It is natural. Order-theoretically, ∀pϕ is the weakest

proposition that entails all instances of ϕ.

• It helps raising intersting questions. What if we drop

atomicity? What if we drop complete multiplicativity? How

much lattice-completeness do we need for the semantics to be

well-defined?

• We use it to prove an analogue of Scroggs’s theorem.
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General Π logics

Definition

A (normal) Π-logic is a set Λ of formulas in LΠ such that it is

first of all a (normal modal logic) propositional modal logic and

that it contains

• ∀p(ϕ→ ψ)→ (∀pϕ→ ∀pψ)

• ∀pϕ(p)→ ϕ(ψ)

• ϕ→ ∀pϕ when p is not free

and is closed under universalization: ϕ/∀pϕ.

The smallest normal Π-logic containing a normal modal logic L is

called LΠ.
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S5Π

S5Π does not derive ∃p(p ∧ atom(p)).

But on Kripke models where R is an equivalence relation,

∃p(p ∧ atom(p)) is valid.

Of course this is because the atomicity.

General algerbaic semantics gives precisely S5Π.
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Algebraic semantics

Definition

For any modal algebra B, a valuation V on B is a function from

Prop to B. It naturally extends to V̂ : L → B in the usual way.

When B is complete, any such valuation can then be extended to

an LΠ-valuation V̂ : LΠ→ B by setting

• V̂ (∀pϕ) =
∧
{ ̂V [p 7→ b](ϕ) | b ∈ B}.

A formula φ ∈ LΠ is valid on a complete modal algebra B,

written as B � φ, if for all valuations V on B, V̂ (φ) = 1.
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Galois connection

A simple Galois connection:

Log(C) = {ϕ ∈ LΠ | B � ϕ for all B ∈ C}
Alg(X ) = {B a complete modal algebra | B � X}

For any class C of complete modal algebras, Log(C) is a normal

Π-logic.

Questions

Which normal Π-logics are complete? Characterize those Λ such

that Λ = Log(Alg(Λ)).

Which classes of complete modal algebras are variety-like?

Charaterize those C such that Alg(Log(C)).
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Simple S5 algebras

A simple S5 algebra is a Boolean algebra together with an

propositional discriminator �:

�> = >;�b = ⊥ for all b 6= >.

Call them csS5A. Then we have the completeness of S5Π.

Log(csS5A) = S5Π.

12



Main Theorems



General completeness

Theorem

For all normal Π-logic Λ ⊇ S5Π,

Log(Alg(Λ) ∩ csS5A) = Λ.

Note that this is different than: for all LΠ where L is a modal logic

extending S5, it is complete (w.r.t. its csS5As).
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Lattice structure

The normal modal logics extending S5 are ordered inversely like

ω + 1.

Theorem

The lattice of normal Π-logics extending S5Π is isomorphic to the

lattice of open sets in N∗ × 2, the disjoint union of 2 copies of

the one-point compatification of the discrete topology on N.

What it is really like:

1 2 3 4 · · · ∞
0′ 1′ 2′ 3′ 4′ · · · ∞′
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Non-normal Π-logics above S5Π

S5Π + ∃p(p ∧ atom(p)) is non-normal.

The logic is given by the class of simple complete S5 algebras with

the filter of atomic elements as the designated set of “truth

values”.
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Proof idea: expressivity

The idea of the proof: we can calculate the expressivity of

〈LΠ, csS5A,�〉, and the expressvity is reflected syntactically in

S5Π.

Then we can determine the classes of csS5As that are

characterized by logics.
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Expressivity

Definition

Let g be ∃p(p ∧ atom(p)). Let Miϕ be

∃q1 · · · ∃qn(
∧

16i<j6n

�(qi → ¬qj) ∧
∧

16i6n

(atom(qi ) ∧�(qi → ϕ)))

Let SBasic be the following fragment of LΠ:

ϕ ::= > | ♦¬g | Mi> | ¬ϕ | (ϕ ∧ ϕ).

Theorem

There is a function basic : LΠ→ SBasic such that B � ϕ iff

B � basic(ϕ) and S5Π ` �u(ϕ)↔ basic(ϕ).
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Tarski invariant

♦¬g says “there is an atomless proposition”. Mi> says “there are

at least i many atoms”.

Definition

For any csS5A B, its type t(B) is a pair 〈t0(B), t1(B)〉 where

t0(B) =

1 if B is atomic

0 if B is not atomic,

t1(B) =

i ∈ N if B has exactly i atoms

∞ if B has infinitely many atoms.

Theorem

B ≡LΠ B ′ iff t(B) = t(B ′).
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Type space

The types are:

1 2 3 4 · · · ∞
0′ 1′ 2′ 3′ 4′ · · · ∞′

And SBasic 3 ϕ ::= > | ♦¬g | Mi> | ¬ϕ | (ϕ∧ϕ) makes this set a

Stone space.

Theorem

Let Type(ϕ) = {t(B) | a csS5A B � ϕ}. Then the type space

〈t(csS5A),Type(SBasic)〉 is a Stone space.
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Type space

Observations:

• The type space is also the Stone space of the Lindenbaum

algebra of the propositional logic in SBasic with axioms

Mi+1> → Mi> and ¬M0> → ♦¬g .

• For any Λ a normal Π-logics above S5Π, Type(Λ) is a filter of

basic clopens. Log(
⋂

Type(Λ)) = Λ by compactness. Hences

logics and closed sets are in one-to-one correspondence.

• In fact, the normal Π-logics extending S5Π are theories of

S5Π. This can be seen by first restricting them to SBasic.
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Future Research



Completeness questions

Questions

Which Π-logics are complete? Characterize those Λ such that

Λ = Log(Alg(Λ)).

Which classes of complete modal algebras are variety-like?

Charaterize those C such that Alg(Log(C)).

Also:

Question

For which modal logic L that is complete w.r.t. complete modal

algebras is LΠ also complete w.r.t. complete modal algebras?
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Conservativity questions

Question

Which normal modal logics L satisfies L = LΠ ∩ L?

Also:

Question

Is there a C-incomplete normal modal logic L which still has

L = LΠ ∩ L?
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Soundness question

For any normal Π-logic, we can still construct its Lindenbaum

algebra, which is in general not complete, but the required meets

are there for the semantics to be well defined.

Question

For a given Π-logic, find meaningful characterizations of the

modal algebrase on which the semantics is always well-defined.

In particular, when is this going to be a first-order condition?
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