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Abstract. In most modal logics, atomic propositional symbols are di-
rectly representing the meaning of sentences (such as sets of possible
worlds). In other words, they use only rigid propositional designators.
This means they are not able to handle uncertainty in meaning directly
at the sentential level. In this paper, we offer a modal language involving
non-rigid propositional designators which can also carefully distinguish
de re and de dicto use of these designators. Then, we axiomatize the
logics in this language with respect to all Kripke models with multiple
modalities and with respect to S5 Kripke models with a single modality.
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1 Introduction

We frequently fail to grasp the meaning of sentences. People who learned English
only from textbooks may not get a certain contextual meaning of “this is sick!”,
and anyone who is not well versed in set theory is unlikely to fully grasp even
the literal meaning of “the Ultimate-L conjecture”. We also intentionally hide
the meaning of symbols by designing secret interpretations of symbols to com-
municate private information in public: cryptographic protocols are essentially
doing this, and the same string of zeros and ones can mean different things when
decoded by different keys.

The famous Frege’s puzzle can also be understood in this way. To people
unfamiliar with the fact that “Lewis Carroll” is the pen name of Charles Dodgson
who is also a logician and responsible for Dodgson’s method in voting theory,
“Lewis Carroll authored Alice in Wonderland” and “Charles Dodgson authored
Alice in Wonderland” express different propositions. Indeed, they are likely to
believe that the first sentence is true while the second sentence is false. However,
given that Lewis Carroll is actually Charles Dodgson, “Lewis Carroll authored
Alice in Wonderland” and “Charles Dodgson authored Alice in Wonderland” in
fact express the same proposition.

⋆ This work is supported by NSSF 22CZX066. The author also thanks the anonymous
referees and the audience of the 2023 Beijing International Summer Workshop on
Formal Philosophy for their helpful comments and suggestions.
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In epistemic logic in its basic form, this ubiquitous phenomenon of uncer-
tainty in meaning is not modeled at all. A propositional symbol p is meant to
directly designate a proposition (a set of possible worlds) much like in first-order
(modal) logic an individual variable x is meant to directly designate an object
in the domain, and one can never be uncertain about what p means but only
what’s p’s truth value since p is already ‘interpreted’.

To our best knowledge, attempts to model uncertainty in meaning in the
modal logic and possible world semantics paradigm are scarce. One notable work
is [19] where different agents may interpret the same propositional symbol dif-
ferently. In the usual setting of possible world semantics with multiple agents
in Agt, this can be understood as taking a model to be (W,{Ri}i∈Agt,{Vi}i∈Agt)
where Ri is the accessibility relation for i (we write the corresponding modal
operator as ‘Bi’, ‘B’ for ‘Belief’) and for each i ∈ Agt, Vi is a valuation function
assigning to each propositional symbol p a set in ℘(W ). Then, Bip is true at a
world w iff Vi(p) ⊆ Ri(w); that is Bip says that i believes the proposition she
takes p to mean. More generally, BiBjBkp means that i believes that j believes
that k believes that p as interpreted by k. In other words, an occurrence of p
is always interpreted by the last agent i whose belief operator scopes over that
occurrence. This restriction is lifted in [18], where we can form propositional
symbols pi indexed by agent i so that pi is always interpreted by Vi. This in a
sense means that if the only uncertainty to the meaning of a propositional sym-
bol p is how different agents may interpret it differently but unambiguously, the
standard epistemic logic can simulate this by using more propositional symbols.

Another important relevant work is [17]. There, the meaning of a proposi-
tional symbol p is not merely determined by the set of possible worlds assigned
to it by the valuation function V , but fundamentally by a syntactic definition
DEFw(p) of it using other propositional symbols, and the definition could vary
from worlds to worlds. Of course, the definitions and the valuation must cohere.
Then, while an agent still knows what is the proposition assigned to p by the
valuation function V , the agent may not know the definition of p, and further
the proposition expressed by the definition of p.

In this paper, we take perhaps the most straightforward way to allow un-
certainty in meaning: we simply let propositional symbols be non-rigid designa-
tors of sets of possible worlds. In other words, we let the valuation function be
world relative. This approach has been taken up in [21] to formalize definite de-
scriptions of propositions and the Brandenburger-Keisler paradox. The paradox
involves sentences such as:

(A1) Ann believes that the strangest proposition that Bob believes is that neutri-
nos travel at twice the speed of light.

(A2) Ann believes that the strangest proposition that Bob believes is true.

In [21], the first sentence is formalized as Ba(γ isφ), and the second sentence’s
de dicto and de re readings are formalized as Bre

a T(γ) and Bdicto
a T(γ), respec-

tively, where γ is a definite description (non-rigid designator) for the strangest
proposition that Bob believes. We find the formalism slightly cumbersome and
not fully general. Taking inspiration from concept abstraction used in first-order
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intentional modal logic [11,13] and assignment operators used in [25,17,30,6], we
relabel the syntactic category of propositional variables x which are rigid desig-
nators and use [p/x]φ to mean “letting x be the proposition expressed by p, φ”.
Since the propositional variables x are only playing the role p used to play, we
are only extending the basic language of modal logic by the binders [p/x]. With
this minimal perturbation, we can already easily distinguish

– [p/x]BiBjx: letting x be the proposition p actually means, i believes that j
believes that x is true;

– Bi[p/x]Bjx: i believes that, with x being p’s meaning, j believes that x;
– BiBj[p/x]x: i believes that j believes that p is true.

The Ann and Bob sentence above can also be formalized with the help of a
necessity modality ◻ that quantifies over all possible worlds, in which case when
◻(x↔ y) is true, x and y denote the same proposition.

– Ba[p/x] ◻ (x↔ y) formalizes (A1) where y directly denotes the proposition
expressed by ‘neutrinos travel at twice the speed of light’.

– [p/x]Bax formalizes the de re reading of (A2).
– Ba[p/x]x formalizes the de dicto reading of (A2).

The semantic type of functions from worlds to sets of worlds appears in various
kinds of higher-order modal logics [15,27,12]. Indeed, there is a way to embed
our language in the higher-order intentional language presented in [15]. Objects
of the said type also bear the name ‘two-dimensional content’ and are used in
for example [28,3,4,23,24]. The semantic function of the operator [p/x] can also
be understood as ‘rigidifying’ the non-rigid designator p. From this perspective,
our work is related to generalized versions of hybrid logic [2]. Further discussion
of relations to higher-order and hybrid modal logics are included in Section 2
after we formally introduce our minimalist language and its semantics.

Our main technical contributions are two axiomatization results, one with
respect to all multiagent models, and one with respect to single-agent models
where the accessibility relation is the universal relation (single-agent epistemic
models). Axiomatization in our setting poses an interesting challenge that echos
with the following ‘paradox’ on a Cantorian level: one cannot be completely
ignorant of the meaning of p in the possible world framework, because there
are always more possible meanings of p (sets of possible worlds) than there
are possible worlds, but for different meanings X of p, we need different possible
worlds to model the possibility that the agent takes X to be the meaning of p. In
completeness proofs with assignment operators, one typically extends language
so that in each maximally consistent set (MCS), each non-rigid designator has a
witness. Let p be such a non-rigid designator. Now different MCSs should have
different witnesses for p, as otherwise they are forced to take p to mean the same
thing. Put in another way, we in principle need fresh witnesses for each MCS
to maintain consistency when adding those witnesses. But then, we are back in
Cantor’s trap: no matter how we extend our language, there will always be more
MCSs than there are variables. We will bypass this difficulty using step-by-step
constructions.
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The rest of the paper is organized as follows: in Section 2, we formally intro-
duce the language and the semantics. We will also comment on the undecidability
of the set of validities for the class of universal models (single-agent S5 case) and
discuss how our language compares to higher-order and hybrid modal logics.
Section 3 deals with the class of all models, i.e., the multi-agent K case, and in
Section 4, we consider the class of universal models, i.e., single-agent S5 case.
Finally, we conclude in Section 5 with possible future research directions.

2 Formal language and semantics

Definition 1. We fix a countably infinite set Prop of propositional names, a
countably infinite set Var of propositional variables, and a non-empty set Agt of
unary modal operators. Then, define language L by the following grammar:

L ∋ φ ∶∶= x ∣ ¬φ ∣ (φ ∧ φ) ∣ ◻φ ∣ [p/x]φ

where x ∈ Var, p ∈ Prop, and ◻ ∈ Agt. The usual abbreviations apply. Also, we
treat [p/x] as a quantifier that binds the variable x. Thus the usual notions of
free and bound variables, free for substitution (substitutability), and so on apply
as well. φ[y/x] is the result of replacing all free occurrence of x in φ by y. We
will usually accompany this notation with a substitutability requirement.

Here symbols in Prop are non-rigid propositional designators while symbols in
Var are rigid propositional designators. Syntactically we do not allow for p ∈ Prop
to appear as an atomic formula since for example, BiBjBkp is ambiguous. Of
course, we could write BiBjBk[p/x]x when that is the intended expression.

Definition 2. A Kripke model with non-rigid propositional designators (‘model’
for short) is a tuple (W,{Pp}p∈Prop,{R◻}◻∈Agt) where
– W is a non-empty set, intuitively the set of possible worlds;
– for each p ∈ Prop, Pp is a function from W to ℘(W ), with Pp(w) understood

as the proposition p designates at w;
– for each ◻ ∈ Agt, R◻ ⊆W 2, the accessibility relation for ◻.
Given a modelM= (W,{Pp}p∈Prop,{R◻}◻∈Agt), an assignment σ forM is a

function from Var to ℘(W ). Truth in a modelM= (W,{Pp}p∈Prop,{R◻}◻∈Agt) is
defined recursively relative to worlds and assignments as follows:

M,w, σ ⊧ x ⇐⇒ w ∈ σ(x)
M,w, σ ⊧ ¬φ ⇐⇒ M,w, σ /⊧ φ
M,w, σ ⊧ (φ ∧ ψ) ⇐⇒ M,w, σ ⊧ φ andM,w, σ ⊧ ψ
M,w, σ ⊧ ◻iφ ⇐⇒ ∀v ∈W,wR◻v⇒M, v, σ ⊧ φ
M,w, σ ⊧ [p/x]φ ⇐⇒ M,w, σ[Pp(w)/x] ⊧ φ.

Here σ[Pp(w)/x] is the function that is identical to σ except that σ[Pp(w)/x](x) =
Pp(w). This ‘f[a/x]’ notation is used for all functions. A formula φ is valid on
a modelM if it is true at all worlds relative to all assignments (writtenM⊧ φ).
φ is valid on a class K of models if it is valid on all models in the class K.
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The analogue of the substitution lemma in first-order logic holds as well.

Lemma 1. For any model M= (W,{Pp}p∈Prop,{R◻}◻∈Agt), w ∈W , assignment
σ forM, formula φ ∈ L, x, y ∈ Var, if y is substitutable for x in φ, thenM,w, σ ⊧
φ[y/x] iffM,w, σ[σ(y)/x] ⊧ φ.

We will also be interested in the case when Agt is a singleton {◻}, and the
relation R◻ is the universal relation. Since the universal relation is uniquely
determined by the set of possible worlds, we will simply dispense with it.

Definition 3. A universal Kripke model with non-rigid propositional designa-
tors (‘universal model’ for short) is a tuple (W,{Pp}p∈Prop) where W is a non-
empty set and for each p ∈ Prop, Pp ∶ W → ℘(W ). When Agt = {◻}, we inter-
preted L on universal modelsM= (W,{Pp}p∈Prop) just like in Definition 2 except
thatM,w, σ ⊧ ◻φ iff forall v ∈W ,M, v, σ ⊧ φ.

These models can be used to model an S5 agent, for which the R◻ relation is
an equivalence relation since truth in L is preserved under generated submodel.
Due to lack of space, we will not define and prove this formally, but in fact,
more generally, L can be translated into the guarded fragment, though not the
two-variable fragment. Now, on universal models, the ‘guard’ does not really do
anything, and indeed, for the class of universal models, its set of validities is
undecidable. For a starter, note that:

Proposition 1. ◻[p/x]◇[p/y](◻(x→ y)∧◇(y∧¬x)) is satisfiable by a universal
model, and all such models are infinite.

The idea is that ◻[p/x] ◇ [p/y](◻(x → y) ∧ ◇(y ∧ ¬x)) entails there must be
an infinite strictly ascending chain of sets of possible worlds. The ‘paradox’
mentioned in the introduction is also formalizable as ◇[p/y] ◻ (x ↔ y), and
indeed no universal model can validate this formula.

Again, due to lack of space, we will not formally prove undecidability, but
the idea is to use the formula ◻[p/x](x∧◻(x→ [p/y]◻(y↔ x))) so that we can
use ◻[p/x] to simulate the first order quantifier ∀x and use another q ∈ Prop to
simulate a binary relation R so that R(x, y) translates to ◇(x∧[q/z]◇(y ∧ z)).
Then we can translate first-order logic with a binary relation into L.

Now we briefly comment on how our language and semantics compare to
the semantics of higher-order modal logics and hybrid logics. First, we consider
the influential system IL (Intentional Logic) presented in [15]. As a higher-
order logic, we first need to define the types of its language. To simplify the
presentation, we omit the basic type e for individuals (tables and chairs) and
the complex types using it. Thus, the basic type names are s and t where s
names the type for possible worlds and t names the type for truth values. All
types can be generated by the following BNF grammar

Type ∋ α ∶∶= t ∣ (α → α) ∣ (s→ α).

Note that s is not by itself a type. When parentheses are omitted, we assume
right-association, e.t. s → s → t means (s → (s → t)). For each α ∈ Type we
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assume that there are countably infinitely many constants c and variables x of
the type α (when we highlight their type, we write cα and xα). Then, the set
Tα of the terms of type α are defined inductively by the following clauses:

– Constants and variables of type α are in Tα.
– If A ∈ Tα→β and B ∈ Tα, then (AB) ∈ Tβ .
– If A ∈ Tβ and x is a variable of type α, then (λx.A) ∈ Tα→β .
– If A,B ∈ Tα, then (A = B) ∈ Tt.
– If A ∈ Tα, then (̂A) ∈ Ts→α.
– If A ∈ Ts→α, then (̌A) ∈ Tα.

Again, we write Aα to highlight that A is of type α and assume left-association
when parentheses are omitted. Truth-functional operators such as ¬ ∈ Tt→t and
∧ ∈ Tt→t→t are not included as they can be defined by lambda terms, and the
meaning of ˆ and ˇ will become clear below.

Semantically, an object of type t is a truth value while an object of type s
is understood as a possible world, and an object of type α → β is a function
from objects of type α to objects of type β. Each term A of type α extensionally
denotes an object of type α and intentionally denotes an object of type s → α,
namely a function from possible worlds to objects of type α. Thus, for a set-
theoretical formal semantics, given a non-empty set W for possible worlds, we
define the full domain DW

α for each type α recursively by DW
t = {0,1}, DW

s =W ,

and DW
α→β = (DW

β )D
W
α , the set of all functions from DW

α to DW
β (here we allow

α to be s). Then, a standard model for IL is a pair (W,I) where W is a non-
empty set (of possible worlds) and I is a function that maps, for all type α, the
constants c of type α to I(c) ∈ DW

s→α, which we take as the intention of c in
this model. An assignment σ for a model (W,I) is a function that maps each
variable x of its type α to σ(x) ∈ DW

α . Then the denotation ∣A∣W,I,w,σ of terms
A at world w relative to assignment σ in model (W,I) is defined recursively:

– ∣c∣W,I,w,σ = I(c)(w) and ∣x∣W,I,w,σ = σ(x).
– ∣AB∣W,I,w,σ = ∣A∣W,I,w,σ(∣B∣W,I,w,σ).
– ∣λxα.Aβ ∣W,I,w,σ = {(a, ∣Aβ ∣W,I,w,σ[a/xα]) ∣ a ∈DW

α }.
– ∣A = B∣W,I,w,σ = 1 if ∣A∣W,I,w,σ = ∣B∣W,I,w,σ, and is 0 otherwise.
– ∣̂A∣W,I,w,σ = {(v, ∣A∣W,I,v,σ) ∣ v ∈W}.
– ∣̌As→α∣W,I,w,σ = ∣As→α∣W,I,w,σ(w).

At any world w, the idea of Â is to obtain the intention of A, the total function
from worlds to A’s denotation at those worlds, as its denotation. Conversely,
when we have a term As→α, its denotation is already ‘intentionally of type α’,
and the idea of Ǎs→α is to get the extension of A’s denotation.

Now let us try to translate our language L into the language of IL with its
standard semantics. If we were working with the basic language of propositional
modal logic, then it would be a natural choice to regard φ ∈ L as terms of type t.
This would require us to take atomic propositional symbols p as constants of type
t so that they could have non-constant intentions, and take modal operators ◻ as
terms of type (s→ t) → t as they operate on the intention of formulas. Then ◻φ
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should be translated as ◻(̂ φ). However, we cannot treat propositional variables
x as constants of type t since syntactically we must be able to bind them. So they
must be a variable of some type. The natural choice we have then is variables
of type s → t, since the natural translation for propositional names p ∈ Prop
are constants of type s → t, and [p/x]φ can be understood as (λx.φ)p. But it
is also natural to take formulas as terms of type t, which coheres well with the
truth-functional operators, so we must deal with the fact that in L, propositional
variables are also formulas. The solution is simple: always use x̌.

More formally, define a translation T on L:

– T (x) = (̌ xs→t) where xs→t is a variable corresponding to x.
– T (¬φ) = ¬T (φ), and T (φ ∧ ψ) = (∧T (φ))T (ψ).
– T (◻φ) = ◻(s→t)→t(̂ T (φ)) where ◻(s→t)→t is a constant corresponding to ◻.
– T ([p/x]φ) = (λxs→t.T (φ))ps→t where ps→t is a constant corresponding to p.

Then it is not hard to check that, with the obvious way to expand a model and
assignment for L into a standard model and assignment for IL, φ and T (φ) are
true at precisely the same worlds.

For the hybrid way to understand L, consider the following variation L@ of
L where instead of a set Var of propositional variables, we use a set Nom of
nominal variables. Then L@ is defined by the grammar

φ ∶∶= (p@i) ∣ ¬φ ∣ (φ ∧ φ) ∣ ◻φ ∣ ↓iφ

where p ∈ Prop, i ∈ Nom, and ◻ ∈ Agt. Given a modelM= (W,{Pp}p∈Prop,{R◻}◻∈Agt)
and a nominal assignment ν ∶ Nom → W , we define the semantics byM,w, ν ⊧
(p@i) iff w ∈ Pp(ν(i)) and M,w, ν ⊧ ↓iφ iff M,w, ν[w/i] ⊧ φ. Then it is also
not hard to see that [p/x]φ can be understood as ↓ixφ[(p@ix)/x] where ix is
a nominal variable corresponding to the variable x and φ[(p@ix)/x] is the re-
sult of replacing free occurrences of x in φ with (p@i). Thus, a truth-preserving
translation from sentences (formulas without free propositional variables) in L
to sentences (formulas without free nominal variables) in L@ can be defined.

3 Axiomatization for multi-agent K

In this section, we deal with the class of all models. Our completeness proof
requires adding new variables to the language. Thus let us fix a set Var+ that
is a superset of Var and is also countably infinite. Then by [Var,Var+] we mean
the set {X ∣ Var ⊆X ⊆ Var+}.

Definition 4. For any X ∈ [Var,Var+], define L(X) by the following grammar:

L(X) ∋ φ ∶∶= x ∣ ¬φ ∣ (φ ∧ φ) ∣ ◻φ ∣ [p/x]φ

where x ∈X, p ∈ Prop, and ◻ ∈ Agt. Obviously L = L(Var).

Now we define the logic NPK (non-rigid propositional K).
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Definition 5. For any X ∈ [Var,Var+], let NPK(X) be the set of formulas in
L(X) axiomatized by the following axioms and rules:

– (PL) All instances of propositional tautologies in L(X)
– (K) ◻(φ→ ψ) → (◻φ→ ◻ψ)
– (Comm) [p/x](φ→ ψ) → ([p/x]φ→ [p/x]ψ) and [p/x]¬φ↔ ¬[p/x]φ
– (Triv) φ↔ [p/x]φ where x does not occur free in φ
– (Sub) [p/y]([p/x]φ↔ φ[y/x]) whenever y is substitutable for x in φ
– (Perm) [p/x][q/y]φ↔ [q/y][p/x]φ where x and y are distinct variables
– (MP) from φ and φ→ ψ derive ψ
– (Nec) from φ derive ◻φ for every ◻ ∈ Agt
– (Inst) from φ derive [p/x]φ

As usual, we write Γ ⊢NPK(X) φ to mean that Γ ∪ {φ} ⊆ L(X) and there is a
finite conjunction γ of formulas in Γ such that γ → φ is in NPK(X). By NPK
we mean NPK(Var).

The soundness of these axioms and rules is easy to check, where (Sub) is the
syntactic version of the substitution lemma. We collect some basic facts about
the logic in the following lemma:

Lemma 2. Let X,Y ∈ [Var,Var+] such that X ⊆ Y .

– NPK(X) proves equivalence under renaming of bound variables.
– If Γ ⊆ L(X) is consistent in NPK(X) (that is, Γ /⊢NPK(X) �), then there is

a maximally consistent set (MCS for short) ∆ w.r.t. NPK(X) extending Γ .
We use choice to fix such a set uniformly as ExtNPK(X)(Γ ).

– For any Γ ⊆ L(X) and any ◻ ∈ Agt, define ◻−1Γ = {φ ∣ ◻φ ∈ Γ}. Then if Γ is
consistent in NPK(X), for any formula ¬◻φ ∈ Γ , {¬φ}∪◻−1Γ is consistent.

– NPK(Y ) is conservative over NPK(X): NPK(Y ) ∩ L(X) = NPK(X).

The first three points are standard exercises. For the last point, note that any
proof in NPK(Y ) uses only finitely many variables. Thus we can always find
unused variables in X and uniformly replace variables in Y ∖X used in the proof
by these new variables in X.

Definition 6. A witness assignment is an injective function v from Prop to
Var+. We often write vp for v(p). For any X ∈ [Var,Var+], a witness assignment
v is fresh for X if ran(v) ∩ X = ∅. For any witness assignment v and X ∈
[Var,Var+], define WF(v,X) (witnessing formulas in L(X) using v) to be

{[p/x]α↔ α[vp/x] ∣ [p/x]α ∈ L(X), vp is substitutable for x in α}.

We also write X + v for X ∪ ran(v).

Lemma 3. For any X ∈ [Var,Var+], Γ a MCS in NPK(X), and v a witness
assignment fresh for X, the set Γ ′ = Γ ∪WF(v,X+v) is consistent in NPK(X+v)
and has exactly one MCS extension in NPK(X + v). We denote this extension
by Γ + v.
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Proof. In this proof, we write ⊢ for ⊢NPK(X) and ⊢+v for ⊢NPK(X+v). First, we
show consistency. Suppose not, then we have a finite {α1, . . . , αn} ⊆ Γ and a
finite {[pi/xi]βi ↔ βi[vpi/xi]}mi=1 ⊆WF(v,X + v) with

⊢+v ⋀
i

αi → ¬⋀
i

([pi/xi]βi ↔ βi[vpi/xi]). (1)

Now we have the following derivable formulas:

⊢+v ⋀αi → ¬⋀
i

[p1/vp1] . . . [pm/vpm]([pi/xi]βi ↔ βi[vpi/xi]). (2)

⊢+v [pi/vpi]([pi/xi]βi ↔ βi[vpi/xi]). (3)

⊢+v [p1/vp1] . . . [pm/vpm]([pi/xi]βi ↔ βi[vpi/xi]). (4)

⊢+v ⋀αi →⋀
i

[p1/vp1] . . . [pm/vpm]([pi/xi]βi ↔ βi[vpi/xi]). (5)

(2) is obtained from (1) by repeated use of (Inst), (Comm), and (Triv). (3) are
simply instances of (Sub). (4) are obtained from (3) by (Inst) and (Perm). (5) is
simply combining (4) for all i and add an antecedent. Thus, Γ is inconsistent in
NPK(X+v). By the conservativity of NPK(X+v) over NPK(X), Γ is inconsistent
in NPK(X), contradicting the assumption.

Now we show that Γ ′ has at most one maximally consistent extension in
NPK(X+v). For this, it is enough to show that for any φ ∈ L(X+v), if Γ ′ /⊢+v φ,
then Γ ′ ⊢+v ¬φ. So suppose Γ ′ /⊢+v φ. Let ψ be the result of renaming bound
variables in φ so that all bound variables are in X. Then Γ ′ /⊢+v ψ as NPK(X +
v) proves equivalence under such renamings (and renamings are reversible by
renamings again). Now list the free variables of ψ in ran(v) as vp1 , vp2 , . . . , vpl

and pick distinct variables x1, x2, . . . , xl in X that does not appear in ψ. Then
inductively define the formulas α0 = ψ, αi+1 = [pi+1/xi+1](αi[xi+1/vpi+1]). Then
αl is in fact [pl/xl] . . . [p1/x1](ψ[x1/vp1] . . . [xl/vpl

]) and moreover, for each i =
0 . . . l − 1, αi+1 ↔ αi is in Γ ′, since αi[xi+1/vpi+1][vpi+1/xi+1] is identical to αi

and hence αi+1 ↔ αi is in the form of [p/x]β ↔ β[vp/x]. Thus Γ ′ /⊢+v αl. But
now αl ∈ L(X), so by the maximality of Γ , Γ ′ ⊢v+ ¬αl. By (Comm),

Γ ′ ⊢v+ [pl/xl] . . . [p1/x1](¬ψ[x1/vp1] . . . [xl/vpl
])

Then by using formulas in WF(v,X), we see that Γ ′ ⊢+v ¬ψ.

Let Γ be a maximally consistent set for NPK. To prepare for the model
building for Γ , first pick for each i ∈ N a witness assignment vi such that for any
i /= j, ran(vi) ∩ ran(vj) = ∅ and ran(vi) ∩Var = ∅. Also, let Var0 = Var + v0 and
Vari+1 = Vari + vi+1. Then let Varω = ⋃i∈NVari.

Now we construct a tree model for Γ in stages. Each node of the tree is of
the form (s,∆) where s is a sequence of modal operators in Agt and ∆ is a MCS
in L(Varlen(s)) such that WF (vlen(s),Varlen(s)) ⊆∆. len(s) is the length of s.

At stage 0, the tree is T0 = {(ϵ, Γ + v0))} where ϵ is the empty sequence.
Then inductively, we define Ti+1 as the result of adding to Ti for each leaf node
(s,∆) (it is a leaf in the sense that len(s) = i), for each ◻ ∈ Agt, and for each
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formula in ∆ of the form ¬ ◻ φ, the pair (s + ◻,ExtNPK(Vari)({¬φ} ∪ ◻−1(∆)) +
vi+1). Here s + ◻ is the sequence that extends s by ◻. Finally, set MNPK =
(T,{Pp}p∈Prop,{R◻}◻∈Agt) where:
– T = ⋃i∈N Ti;
– (s1,∆1)R◻(s2,∆2) iff s2 = s1 + ◻
– Pp((s,∆)) = {(s′,∆′) ∈ T ∣ vlen(s)p ∈∆′}.

Definition 7. A formal assignment g forMNPK is a function from Var to Varω
such that g(x) is either x itself or is in Varω ∖Var. We extend g so that for any
φ ∈ L, g(φ) = φ[g(x)/x]. Note that g(x) is always substitutable for x in φ. For
each formal assignment g forMNPK, define assignment g by

g(x) = {(s,∆) ∈ T ∣ g(x) ∈∆}.

Also, for each (s,∆) ∈ T , we say that a formal assignment g is admissible for
(s,∆) if ran(g) ⊆ Varlen(s).

Lemma 4. For any formula φ ∈ L, any formal assignment g forMNPK, and any
(s,∆) ∈ T , if g is admissible for (s,∆), thenMNPK, (s,∆), g ⊧ φ iff g(φ) ∈∆.

Proof. For the base case, note that for any x ∈ Var, trivially by definition,

MNPK, (s,∆), g ⊧ x⇔ (s,∆) ∈ g(x) ⇔ g(x) ∈∆.

For the Boolean cases, we only need to note that g(¬α) = ¬g(α) and g((α∧β)) =
(g(α) ∧ g(β)) and that ∆ is maximally consistent.

For one direction of the modal cases, suppose g(◻φ) ∈ ∆. Then ◻g(φ) ∈ ∆.
By the construction of T , for any (s + ◻,∆′) ∈ T , g(φ) ∈ ∆′. By Induction
Hypothesis (IH), and noting that since g is admissible for (s,∆), g must also
be admissible for (s + ◻,∆′),MNPK, (s + ◻,∆′), g ⊧ φ. By the definition of R◻,
MNPK, (s,∆), g ⊧ ◻φ.

For the other direction of the modal cases, suppose g(◻φ) /∈ ∆. Since g is
admissible for (s,∆), g(◻φ) ∈ L(Varlen(s)). Since ∆ is a MCS of NPK(Varlen(s)),
¬ ◻ g(φ) ∈ ∆. By the construction of T , there is (s + ◻,∆′) ∈ T such that
¬g(φ) ∈ ∆′, and then g(φ) /∈ ∆′. By IH, MNPK, (s + ◻,∆′), g /⊧ φ, and thus
MNPK, (s,∆), g /⊧ ◻φ.

Finally, for the assignment operator case, consider any formula [p/x]φ ∈ L.

MNPK, (s,∆), g ⊧ [p/x]φ⇔MNPK, (s,∆), g[vlen(s)p /x] ⊧ φ⇔ g[vlen(s)p /x](φ) ∈∆.

The first equivalence is due to our definition of Pp, g[Pp(s,∆)/x] = g[vlen(s)p /x],
and the second is by IH. Observe that the formula g([p/x]φ) ↔ g[vlen(s)p /x](φ)
is precisely of the form [p/x]β ↔ β[vlen(s)p /x] ∈WF(vlen(s),Varlen(s)), where β is
the result of replacing each free variable y /= x in φ by g(y). Since g is admissible
for ∆ so that β ∈ L(Varlen(s)) and by construction ∆ is of the form Ξ + vlen(s)

where Ξ is maximally consistent, the formula g([p/x]φ) ↔ g[vlen(s)p /x](φ) is in
∆. Thus g[vlen(s)p /x]φ ∈∆ iff g([p/x]φ) ∈∆.
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Given the last truth lemma, MNPK, (ϵ, Γ + v0), id satisfies Γ , where id is the
identity function from Var to Var. Thus,

Theorem 1. NPK is sound and strongly complete with respect to the class of
all Kripke models with non-rigid propositional designators.

4 Axiomatization for single agent S5

In this section, we deal with the case where Agt = {◻} and models are universal.
To facilitate describing a special axiom for S5, where p⃗ = (p1, . . . , pn) is a finite
sequence from Prop of length n ∈ N+, and x⃗ = (x1, . . . , xn) is a finite sequence
from Var+ of equal length n, by [p⃗/x⃗] we mean the stack of assignment operators
[p1/x1]⋯[pn/xn]. Also, when v is an injective function from Prop to Var+, by vp⃗
we mean the sequence (vp1 , . . . , vpn). Thus [p⃗/vp⃗] is [p1/vp1]⋯[pn/vpn].

Definition 8. For any X ∈ [Var,Var+], let NPS5(X) be the set of formulas in
L(X) axiomatized by all the axioms and rules defining NPK(X) and also:

– All instances of the usual S5 axioms.

– (SymSub) [p⃗/vp⃗](γ → ◻[q⃗/z⃗] ◇ (γ ∧ ⋀m
i=1([pi/xi]φi ↔ φi[vpi/xi]))) where

p⃗ = (p1, . . . , pn) is from Prop, v is an injection from Prop to X, q⃗ and z⃗ are
sequences of equal length from Prop and X respectively, variables in z⃗ does
not occur in γ or vp⃗, and vpi is substitutable for xi in φi.

(SymSub) says something stronger than (Sub): under the assignment [p/y], even
if some other variable z in φ is bound by the value of p at some other world,
still [p/x]φ ↔ φ[y/x] at this world. We can return to ‘this world’ by ◻◇ since
the underlying accessibility relation is universal (and hence symmetric). The
extra formula γ further solidifies that we are returning to ‘this world’. Then, the
soundness of these axioms and rules over universal models is not hard to check.

The analogue of Lemma 2 and Lemma 3 holds also for NPS5 since they only
use the NPK part, and for the lack of space we do not repeat then here. The
following technical lemma shows the use of (SymSub).

Lemma 5. Suppose X ∈ [Var,Var+], v1 is a witness assignment such that ran(v1) ⊆
X, v2 is a witness assignment fresh for X, Γ1 and Γ2 are both MCSs in NPS5(X)
such that WF(v1,X) ⊆ Γ1 and ◻−1(Γ1) ⊆ Γ2, and finally ∆2 = Γ2 + v2. Then
Γ1 ∪WF(v1,X + v2) ∪ ◻−1∆2 is consistent in NPS5(X + v2).

Proof. We write ⊢ for ⊢NPS5(X) and ⊢+v2 for ⊢NPS5(X+v2). Suppose toward a
contradiction that Γ1 ∪WF(v1,X + v2) ∪ ◻−1∆2 is inconsistent. Since Γ1 and
◻−1∆2 are closed under conjunctions, there are γ ∈ Γ1, δ ∈ ◻−1∆2, and formulas
[pi/xi]φi ↔ φi[v1pi

/xi] (i = 1 . . .m) from WF(v1,X + v2) such that

γ,
m

⋀
i=1

([pi/xi]φi ↔ φi[v1pi
/xi]), δ ⊢+v2 �.
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Since NPS5 proves equivalence under renaming bound variables, without loss of
generality, we can assume that all the bound variables in all the φi appear in X.
By Boolean and normal modal reasoning, we have

δ ⊢+v2 γ → ¬
m

⋀
i=1

([pi/xi]φi ↔ φi[v1pi
/xi]),

◻δ ⊢+v2 ◻(γ → ¬
m

⋀
i=1

([pi/xi]φi ↔ φi[v1pi
/xi])),

◻δ ⊢+v2 ¬◇ (γ ∧
m

⋀
i=1

([pi/xi]φi ↔ φi[v1pi
/xi])).

Since δ ∈ ◻−1∆2, this means that ¬◇ (γ ∧ ⋀m
i=1([pi/xi]φi ↔ φi[v1pi

/xi])) is also
in ∆2. We will show that

◇(γ ∧
m

⋀
i=1

([pi/xi]φi ↔ φi[v1pi
/xi])) (β)

is also in ∆2, rendering ∆2 inconsistent. Since Γ2 is consistent, by Lemma 3, ∆2

should also be consistent, a contradiction.
Enumerate the set {p ∈ Prop ∣ v2p occurs in β} as q⃗ = (q1, . . . , ql). Then pick

fresh variables z⃗ = (z1, . . . , zl) from X and let ψi = φi[z1/v2q1]⋯[zl/v
2
ql
] for each

i = 1 . . .m. Note that since γ is from Γ1, no variables in ran(v2) occurs in γ.
Now consider the formula

[p⃗/v1p⃗](γ → ◻[q⃗/z⃗] ◇ (γ ∧
m

⋀
i=1

([pi/xi]ψi ↔ ψi[v1pi
/xi]))).

Note that this is in the form of the axiom (SymSub) and is in L(X). Thus it is in
Γ1. But since WF(v1,X) ⊆ Γ1, γ → ◻[q⃗/z⃗] ◇ (γ ∧⋀m

i=1([pi/xi]ψi ↔ ψi[v1pi
/xi]))

is in Γ1. Since γ ∈ Γ1, ◻[q⃗/z⃗] ◇ (γ ∧ ⋀m
i=1([pi/xi]ψi ↔ ψi[v1pi

/xi])) is also in Γ1.

Since ◻−1Γ1 ⊆ Γ2,

[q⃗/z⃗] ◇ (γ ∧
m

⋀
i=1

([pi/xi]ψi ↔ ψi[v1pi
/xi])) (α)

is in Γ2, and hence is in ∆2 = Γ2 + v2. But observe that β can be obtained by
iteratively removing [qi/zi] and instantiate zi with v

2
qi (reversing the process of

constructing ψi from φi). Since ∆2 = Γ2+v2, WF(v2,X +v2) ⊆∆2. So ∆2 proves
α↔ β, and hence β is in ∆2.

Let Γ be a maximally consistent set for NPS5. To build a universal model
for Γ , pick fresh witness assignments {vi ∣ i ∈ N} and corresponding variable sets
Vari and Varω as before. It is useful to note that L(Varω) = ⋃i∈NL(Vari) since
each formula is finite and uses only finitely many variables in Varω. We fix an
enumeration of (¬◻χ1,¬◻χ2, . . . ) of all formulas in L(Varω) of the form ¬◻φ.

Now we build a model for Γ in stages, where at stage i, we build a sequence
Σi = (Σi

0, . . . ,Σ
i
i) of MCSs in NPS5(Vari), a set Πi ⊆ L(Vari), and a formula

¬ ◻ θi (here i > 0) with set Hi = {¬ ◻ θ1, . . . ,¬ ◻ θi} (with H0 = ∅) such that:
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– for each j = 0 . . . i, WF (vj ,Vari) ⊆ Σi
j ;

– for each j = 0 . . . i, ◻−1Σi
j =Πi;

– for each j = 1 . . . i, ¬θj ∈ Σi
j and ¬ ◻ θj is the first formula in the sequence

(¬ ◻ χ1,¬ ◻ χ2, . . . ) that appears in Πj−1 ∖Hj−1.

Intuitively, Πi is the ‘modal theory’ of the model at stage i, and Hi is the set
of ¬◻ formulas processed before and at stage i.

We start the process with Σ0 = (Σ0
0) where Σ0

0 = γ + v0 and Π0 = ◻−1Σ0
0 .

Then, inductively for each i ∈ N, we define Σi+1 and Πi+1 as follows:

– Let ¬◻θi+1 be the first in (¬◻χ1,¬◻χ2, . . . ) that is in Πi ∖Hi. There must
be one since Hi is finite while using redundant conjuncts, there are infinitely
many formulas of the form ¬ ◻ φ in Πi.

– Since Πi = ◻−1Σi
i , by (S5), Πi ∪ {¬θi+1} is consistent in NPS5(Vari). Let

Σi+1
i+1 = ExtNPS5(Vari)(Πi ∪ {¬θi+1}) + vi+1. Then let Πi+1 = ◻−1Σi+1

i+1 .

– For each j = 0 . . . i, by constructionWF (vj ,Vari) ⊆ Σi
j . Also, since ◻−1(Σi

j) =
Πi, ◻−1(Σi

j) ⊆ ExtNPS5(Vari)(Πi ∪ {¬θi+1}). Moreover, Vari+1 = Vari + vi+1.
Thus, Lemma 5 applies, and Σi

j ∪WF (vj ,Vari+1)∪Πi+1 is consistent. We let

Σi+1
j = ExtNPS5(Vari+1)(Σi

j∪WF (vj ,Vari+1)∪Πi+1). By (S5), ◻−1Σi+1
j =Πi+1.

Now we combine the sequences into a single model. For each i ∈ N, let ∆i =
⋃j≥iΣ

j
i . We also set Π = ⋃i∈NΠ

i and H = ⋃i≥1H
i, which is {¬◻θ1,¬◻θ2, . . .}.

Lemma 6. For each i ∈ N: ∆i is a MCS of NPS5(Varω), WF (vi,Varω) ⊆ ∆i,
and ◻−1∆i =Π. Moreover, for any formula of the form ¬ ◻φ ∈Π, there is i ∈ N
such that ¬φ ∈∆i.

Proof. Since each Σj
i is a MCS of NPS5(Varj) and (Σj

i )j≥i is also an ascending

sequence, ∆i is a MCS of NPS5(Varω). Also, for each j ≥ i, WF (vi,Varj) ⊆ Σj
i ⊆

∆i. This means WF (vi,Varω) ⊆∆i. The proof for ◻−1∆i =Π is also not hard.
Now take any formula ¬ ◻φ ∈Π. Let i be the smallest such that ¬ ◻φ ∈Πi,

and also let j be such that ¬ ◻ φ = ¬ ◻ χj . Then by construction, ¬ ◻ φ must
be in Hi+j since at every stage after i, a formula ¬ ◻ χk before ¬ ◻ χj must be
processed if ¬◻χj is not processed at that stage. This means there k ≤ i+ j such
that ¬φ ∈ Σk

k ⊆∆k.

Given the above lemma, we defineMNPS5 = (D,{Pp}p∈Prop) where D = {∆i ∣ i ∈
N} and for any ∆i ∈D, Pp(∆i) = {∆j ∈D ∣ vip ∈∆j}. Then, similar to Definition

7, a formal assignment g forMNPS5 is a function from Var to Varω such that g(x)
is either x itself or is not in Var. Then for any φ ∈ L, g(φ) = φ[g(x)/x]. Further,
define the corresponding assignment g forMNPS5 by g(x) = {∆j ∈D ∣ g(x) ∈∆j}.
The concept of admissibility is not needed here.

Lemma 7. For any formula φ ∈ L, any formal assignment g for MNPS5, and
any ∆i ∈D,MNPS5,∆i, g ⊧ φ iff g(φ) ∈∆i.

Proof. The base case and the Boolean cases are again easy. For the modal case,
if g(◻φ) = ◻g(φ) ∈ ∆i, then by S5 logic, ◻ ◻ g(φ) ∈ ∆i. Then ◻g(φ) ∈ Π and
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g(φ) ∈∆j for any ∆j ∈D by Lemma 6. By IH, for any ∆j ∈D,MNPS5,∆j , g ⊧ φ.
ThenMNPS5,∆i, g ⊧ ◻φ.

If g(◻φ) = ◻g(φ) /∈ ∆i, then by maximality, ¬ ◻ g(φ) ∈ ∆i. By S5 logic,
◻¬ ◻ g(φ) ∈ ∆i, and ¬ ◻ g(φ) ∈ Π. By Lemma 6, there is ∆j ∈ D such that
¬g(φ) ∈∆j . By consistency and IH,MNPS5,∆j , g /⊧ φ. ThenMNPS5,∆i, g /⊧ ◻φ.

Finally, for the assignment operator case, consider any formula [p/x]φ ∈ L.
Now because g[Pp(∆i)/x] = g[vip/x] and IH,

MNPS5,∆i, g ⊧ [p/x]φ⇔MNPS5,∆i, g[vip/x] ⊧ φ⇔ g[vip/x](φ) ∈∆i.

Then, noting that g([p/x]φ) ↔ g[vip/x](φ) is in WF(vi,Varω) ⊆∆i,MNPS5,∆i, g ⊧
[p/x]φ⇔ g([p/x]φ) ∈∆i.

By the above truth lemma, we have

Theorem 2. NPS5 is sound and strongly complete with respect to the class of
all universal Kripke models with non-rigid propositional designators.

5 Conclusion

We have only scratched the surface of the formalism proposed in this paper. The
immediate next step is to consider the logic of multi-agent epistemic models, be
it with equivalence relations, transitive relations, or some other special relations
of interest, since only then can we start talking about uncertainty in meaning in
a multi-agent setting, and consider the information dynamics on the meaning of
sentences. Models with a universal modality are also very important since the
universal modality can help us express equality between propositions. We believe
that by combining our two constructions in this paper, axiomatizations can be
obtained in most of the cases.

Once we start working in a multi-agent epistemic setting, the ideas in [18,19]
and [17] are worth incorporating. When talking about how different people may
interpret p differently, an obvious drawback of our semantics is that there is
always a ground truth of what p actually means. But in many situations, the
meaning of p may be completely relative (before a convention is reached). In that
case, the best we can do is to have versions pi of p for each agent i, represent-
ing how agent i interprets p, just like in [18]. But importantly, and differently
from [18], each pi is still non-rigid, since an agent i may well be uncertain how
j interprets p, i.e., what pj means. The issue of definition in [17] can also be
discussed in our framework. For example, when ◻ is the universal modality,
◻[p/x][q/y][r/z] ◻ (x ↔ (y ∧ z)) seems to say that p is defined by q ∧ r. Of
course, one may take this as only saying that p and q∧ r are necessarily equal in
the proposition expressed, and definitions are more hyperintentional than that.
But our framework is already hyperintentional in a sense: if we take functions
from worlds to truth values, namely sets of possible worlds, as intentional, then
functions from worlds to sets of possible worlds seem deserving of the description
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‘hyperintentional’. A discussion of how our framework relates to other hyperin-
tentional frameworks such as [26,29,23,24] is needed here. Another important
addition to consider is information dynamics. Since p is now non-rigid, updating
with p relates to externalism in epistemology [9,5,16].

The extra axiom (SymSub) may look unseemly to many. We see two possible
ways to eliminate it. The first is through nominals [1]: then we believe the ax-
iom can be replaced by [p/y](i → ◻[q/z] ◻ (i → ([p/x]φ↔ φ[y/x]))). If we use
(p@i) and ↓i as in L@ mentioned in Section 2, then as the assignment operator
can be eliminated, a simple axiomatic system may be obtained. Another way
is by introducing propositional quantifiers ∀x binding propositional variables
x ∈ Var [10] since what we really want is [p/y]∀z(φ ↔ φ[y/x]) where z could
range over propositions denoted by some q at other worlds. A Barcan formula
∀x◻φ→ ◻∀xφ and an instantiation axiom ∀xφ→ [p/x]φ intuitively correspond
to the minimal requirement on the range of propositional variables. Note that
if we insist that the semantics of ∀x considers all sets of possible worlds, we
will immediately run into non-axiomatizability even in single-agent cases, unlike
in situations without non-rigid propositional designators and assignment oper-
ators [20,7,8], since those non-rigid designators can simulate arbitrary modal
operators, and results such as [22,14] would apply. But without this ‘full do-
main’ requirement, we believe axiomatizations are within reach. Generalizing
to an algebraic setting that can avoid assuming that there are possible worlds
(world propositions) may also be interesting. Here it may be useful to interpret
[p/x]φ as ∀x([p]x → φ) where for each p ∈ Prop, [p] is a unary modality so
that [p]x means ‘what p means is x’. This essentially goes back to the expres-
sion (γ isφ) used in [21]. An assumption we have made throughout the paper is
that there is always a unique proposition meant by p. This can be expressed by
∃x([p]x ∧ ∀y([p]y → (x = y))) using equality between propositions. It remains
to be seen what axiomatizability results follow from this setting.
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